Visualizing Real Algebraic Curves and Surfaces with Singularities

Oliver Labs

Saarland University (Germany)
E-Mail: Labs@math.uni-sb.de, mail@OliverLabs.net.

March 17, 2010 (at Auron)
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.

Easy:
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.

Easy:
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.

Easy:
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.

Easy:

Difficult:
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.

Easy:

Difficult:
Introduction

In this talk, we discuss which kinds of plane curves and surfaces are difficult to visualize.

Easy:

Difficult:
Introduction

Even worse:
Sometimes you might not see that there is a difficult part!
Introduction

Even worse:
Sometimes you might not see that there is a difficult part!
Introduction

Even worse:
Sometimes you might not see that there is a difficult part!
Introduction

Even worse:
Sometimes you might not see that there is a difficult part!
Introduction

Even worse:
Sometimes you might not see that there is a difficult part!
Introduction

Another example:
Introduction

Another example:

Easy:
Introduction

Another example:

Easy:
Introduction

Another example:

Easy:
Introduction

Another example:

Easy: Difficult:
Introduction

Another example:

Easy:

Difficult:
Introduction

Another example:

Easy:

Difficult:
Introduction

- Currently, a lot of work on visualization of curves/surfaces.
- E.g., attempts to do real-time visualization of surfaces.
- So: a need for good test examples.
- Current practice (often, not always): use random equations, curves/surfaces with (many) ordinary double points (the simplest singularities), . . .
- We want to be able to justify statements such as: we can visualize curves/surfaces up to degree 10.
- As an approach to this, we give a list of equations which correspond to curves/surfaces which are — in some natural sense — at least close to the most difficult ones.
Introduction

- Currently, a lot of work on visualization of curves/surfaces.
- E.g., attempts to do real-time visualization of surfaces.
- So: a need for good test examples.
- Current practice (often, not always): use random equations, curves/surfaces with (many) ordinary double points (the simplest singularities), . . .
- We want to be able to justify statements such as: we can visualize curves/surfaces up to degree 10.
- As an approach to this, we give a list of equations which correspond to curves/surfaces which are — in some natural sense — at least close to the most difficult ones.
Introduction

▶ Currently, a lot of work on visualization of curves/surfaces.
▶ E.g., attempts to do real-time visualization of surfaces.
▶ So: a need for good test examples.
▶ Current practice (often, not always): use random equations, curves/surfaces with (many) ordinary double points (the simplest singularities), . . .
▶ We want to be able to justify statements such as: we can visualize curves/surfaces up to degree 10.
▶ As an approach to this, we give a list of equations which correspond to curves/surfaces which are — in some natural sense — at least close to the most difficult ones.
Introduction

- Currently, a lot of work on visualization of curves/surfaces.
- E.g., attempts to do real-time visualization of surfaces.
- So: a need for good test examples.
- Current practice (often, not always): use random equations, curves/surfaces with (many) ordinary double points (the simplest singularities), . . .
- We want to be able to justify statements such as: we can visualize curves/surfaces up to degree 10.
- As an approach to this, we give a list of equations which correspond to curves/surfaces which are — in some natural sense — at least close to the most difficult ones.
Introduction

- Currently, a lot of work on visualization of curves/surfaces.
- E.g., attempts to do real-time visualization of surfaces.
- So: a need for good test examples.
- Current practice (often, not always): use random equations, curves/surfaces with (many) ordinary double points (the simplest singularities), . . .
- We want to be able to justify statements such as: we can visualize curves/surfaces up to degree 10.
- As an approach to this, we give a list of equations which correspond to curves/surfaces which are — in some natural sense — at least close to the most difficult ones.
Introduction

- Currently, a lot of work on visualization of curves/surfaces.
- E.g., attempts to do real-time visualization of surfaces.
- So: a need for good test examples.
- Current practice (often, not always): use random equations, curves/surfaces with (many) ordinary double points (the simplest singularities), ...
- We want to be able to justify statements such as: we can visualize curves/surfaces up to degree 10.
- As an approach to this, we give a list of equations which correspond to curves/surfaces which are — in some natural sense — at least close to the most difficult ones.
The Challenge

- Many of our examples may be visualized correctly using some existing software.
- However, in almost all cases, the computation is too slow for many applications.
- Even in the case of plane curves of moderate degree, to my knowledge, there is no software which produces a good and quick visualization in all cases without interaction (e.g. by changing some ε, sometimes even this does not help!).
- So, the challenge is often not the ability of visualizing an example correctly (at least not for plane curves), but to do it correctly in short time.
The Challenge

- Many of our examples may be visualized correctly using some existing software.
- However, in almost all cases, the computation is too slow for many applications.
- Even in the case of plane curves of moderate degree, to my knowledge, there is no software which produces a good and quick visualization in all cases without interaction (e.g. by changing some ε, sometimes even this does not help!).
- So, the challenge is often not the ability of visualizing an example correctly (at least not for plane curves), but to do it correctly in short time.
The Challenge

▶ Many of our examples may be visualized correctly using some existing software.
▶ However, in almost all cases, the computation is too slow for many applications.
▶ Even in the case of plane curves of moderate degree, to my knowledge, there is no software which produces a good and quick visualization in all cases without interaction (e.g. by changing some ε, sometimes even this does not help!).
▶ So, the challenge is often not the ability of visualizing an example correctly (at least not for plane curves), but to do it correctly in short time.
The Challenge

- Many of our examples may be visualized correctly using some existing software.
- However, in almost all cases, the computation is too slow for many applications.
- Even in the case of plane curves of moderate degree, to my knowledge, there is no software which produces a good and quick visualization in all cases without interaction (e.g. by changing some ε, sometimes even this does not help!).
- So, the challenge is often not the ability of visualizing an example correctly (at least not for plane curves), but to do it correctly in short time.
Definition

Definition

A real algebraic surface of degree \(d \) in \(\mathbb{R}^3 \) is (the zero-set of) a polynomial in three variables of degree \(d \):

\[
x^d + a_1 x^{d-1} y + a_2 x^{d-1} z + a_3 x^{d-1} + \ldots + a_k.
\]

Example
Definition

A real algebraic surface of degree d in \mathbb{R}^3 is (the zero-set of) a polynomial in three variables of degree d:

$$x^d + a_1 x^{d-1} y + a_2 x^{d-1} z + a_3 x^{d-1} + \ldots + a_k.$$

Example

$d = 2$
Definition

A real algebraic surface of degree d in \mathbb{R}^3 is (the zero-set of) a polynomial in three variables of degree d:

$$x^d + a_1 x^{d-1} y + a_2 x^{d-1} z + a_3 x^{d-1} + \ldots + a_k.$$

Example

$d = 2$

$d = 3$
Definition

Definition

A real algebraic surface of degree d in \mathbb{R}^3 is (the zero-set of) a polynomial in three variables of degree d:

$$x^d + a_1 x^{d-1} y + a_2 x^{d-1} z + a_3 x^{d-1} + \ldots + a_k.$$

Example

\begin{align*}
d &= 2 \\
d &= 3 \\
d &= 5
\end{align*}
Overview

Three parts of the talk:

- Exact input data (basically: rational coefficients).
- Data with noise / floating point coefficients.
- A new field of application: convex algebraic geometry.
Overview

Three parts of the talk:

- Exact input data (basically: rational coefficients).
- Data with noise / floating point coefficients.
- A new field of application: convex algebraic geometry.
Overview

Three parts of the talk:

- Exact input data (basically: rational coefficients).
- Data with noise / floating point coefficients.
- A new field of application: convex algebraic geometry.
Overview

Three parts of the talk:

▶ Exact input data (basically: rational coefficients).
▶ Data with noise / floating point coefficients.
▶ A new field of application: convex algebraic geometry.
Why do we need good and quick visualizations?

Example (Visualization of the Swallowtail)

Consider the polynomial \(p \) in one variable \(x \) having 3 parameters: \(p = x^4 + ax^2 + bx + c \).

\(p \) has a double root iff \(p(x_0) = \frac{\partial p}{\partial x}(x_0) = 0 \) for some \(x_0 \).

\[x_0^4 + ax_0^2 + bx_0 + c = 0, \quad 4x_0^3 + ax_0 + b = 0. \]

Eliminating \(x_0 \), we get a condition on \(a, b, c \) which holds iff \(p \) has a double root (the discriminant):

\[-4b^2c^3 - 16ac^4 + 27b^4 + 144ab^2c + 128a^2c^2 - 256a^3 = 0.\]

Moreover, the geometry of this surface tells us everything about the distribution of the roots of \(p \):

www.Calendar.AlgebraicSurface.net

surfex

Oliver Labs, Saarland University (Germany)
Why do we need good and quick visualizations?

Example (Visualization of the Swallowtail)

- Consider the polynomial p in one variable x having 3 parameters: $p = x^4 + ax^2 + bx + c$.
- p has a double root iff $p(x_0) = \frac{\partial p}{\partial x}(x_0) = 0$ for some x_0.
- $\Rightarrow x_0^4 + ax_0^2 + bx_0 + c = 0, 4x_0^3 + ax_0 + b = 0$.
- Eliminating x_0, we get a condition on a, b, c which holds iff p has a double root (the discriminant):
 $$-4b^2c^3 - 16ac^4 + 27b^4 + 144ab^2c + 128a^2c^2 - 256a^3 = 0.$$
- Moreover, the geometry of this surface tells us everything about the distribution of the roots of p: [anim]

www.Calendar.AlgebraicSurface.net surfex

Oliver Labs, Saarland University (Germany) Visualizing Real Curves and Surfaces
Why do we need good and quick visualizations?

Example (Visualization of the Swallowtail)

- Consider the polynomial p in one variable x having 3 parameters: $p = x^4 + ax^2 + bx + c$.

- p has a double root iff $p(x_0) = \frac{\partial p}{\partial x}(x_0) = 0$ for some x_0.

- $\Rightarrow x_0^4 + ax_0^2 + bx_0 + c = 0, 4x_0^3 + ax_0 + b = 0$.

- Eliminating x_0, we get a condition on a, b, c which holds iff p has a double root (the discriminant):

 \[-4b^2c^3 - 16ac^4 + 27b^4 + 144ab^2c + 128a^2c^2 - 256a^3 = 0.\]

- Moreover, the geometry of this surface tells us everything about the distribution of the roots of p: [anim]

www.Calendar.AlgebraicSurface.net [surfex]
Why do we need good and quick visualizations?

Example (Visualization of the Swallowtail)

- Consider the polynomial p in one variable x having 3 parameters: $p = x^4 + ax^2 + bx + c$.
- p has a double root iff $p(x_0) = \frac{\partial p}{\partial x}(x_0) = 0$ for some x_0.
- $\Rightarrow x_0^4 + ax_0^2 + bx_0 + c = 0$, $4x_0^3 + ax_0 + b = 0$.
- Eliminating x_0, we get a condition on a, b, c which holds iff p has a double root (the discriminant):

 $-4b^2c^3 - 16ac^4 + 27b^4 + 144ab^2c + 128a^2c^2 - 256a^3 = 0$.

- Moreover, the geometry of this surface tells us everything about the distribution of the roots of p: [anim](www.Calendar.AlgebraicSurface.net) [surfex]
Why do we need good and quick visualizations?

Example (Visualization of the Swallowtail)

Consider the polynomial p in one variable x having 3 parameters: $p = x^4 + ax^2 + bx + c$.

p has a double root iff $p(x_0) = \frac{\partial p}{\partial x}(x_0) = 0$ for some x_0.

$\Rightarrow x_0^4 + ax_0^2 + bx_0 + c = 0$, $4x_0^3 + ax_0 + b = 0$.

Eliminating x_0, we get a condition on a, b, c which holds iff p has a double root (the discriminant):

$-4b^2c^3 - 16ac^4 + 27b^4 + 144ab^2c + 128a^2c^2 - 256a^3 = 0$.

Moreover, the geometry of this surface tells us everything about the distribution of the roots of p: [anim]

www.Calendar.AlgebraicSurface.net surfex

Oliver Labs, Saarland University (Germany)
Why do we need good and quick visualizations?

Example (Visualization of the Swallowtail)

▶ Consider the polynomial p in one variable x having 3 parameters: $p = x^4 + ax^2 + bx + c$.

▶ p has a double root iff $p(x_0) = \frac{\partial p}{\partial x}(x_0) = 0$ for some x_0.

▶ $x_0^4 + ax_0^2 + bx_0 + c = 0$, $4x_0^3 + ax_0 + b = 0$.

▶ Eliminating x_0, we get a condition on a, b, c which holds iff p has a double root (the discriminant):

$$-4b^2c^3 - 16ac^4 + 27b^4 + 144ab^2c + 128a^2c^2 - 256a^3 = 0.$$

▶ Moreover, the geometry of this surface tells us everything about the distribution of the roots of p: [anim](www.Calendar.AlgebraicSurface.net) [surfex](www.Calendar.AlgebraicSurface.net)
Some Surface Visualization Issues

Summary: Visualization Challenges

Some Uncertainty Issues

Visualizing Convex Algebraic Geometry

Conclusion
Some Visualization Issues

For the first part of the talk, we assume that the curve or surface we want to visualize is given by exact data.

We call a visualization correct if a pixel is colored iff the curve has a point inside the pixel:

(a) the curve
(b) wrong
(c) correct
Visualization Issue 1: Non-Reduced Varieties

\[(x^2 + y^2 - z^2 - 1)^2 = 0\]

A squarefree version of the polynomial can be computed to solve the problem.

Attention: With non-exact data this step is already non-trivial!
Visualization Issue 1: Non-Reduced Varieties

\[(x^2 + y^2 - z^2 - 1)^2 = 0\]

A squarefree version of the polynomial can be computed to solve the problem. **Attention:** With non-exact data this step is already non-trivial!
Visualization Issue 2: Small connected components
Visualization Issue 2: Small connected components

Using computer algebra, we can compute a point on each connected component, e.g. by computing resultants.
Visualization Issue 3: Real Lower-Dimensional Parts

Using computer algebra, one can compute good equations for the singular locus or project the surface down to a plane to simplify the problem.
Visualization Issue 3: Real Lower-Dimensional Parts

Using computer algebra, one can compute good equations for the singular locus or project the surface down to a plane to simplify the problem.
Real Lower-Dimensional Parts (II)

Again: Using computer algebra, one can compute good equations for the singular locus or project the surface down to a plane to simplify the problem.
Real Lower-Dimensional Parts (II)

Again: Using computer algebra, one can compute good equations for the singular locus or project the surface down to a plane to simplify the problem.
Singularities

Definition

A singularity of a surface S in \mathbb{R}^3 is a point $p \in S$, s.t. all the partial derivatives vanish:

$$\frac{\partial S}{\partial x}(p) = \frac{\partial S}{\partial y}(p) = \frac{\partial S}{\partial z}(p) = 0.$$
Some Surface Visualization Issues
Summary: Visualization Challenges
Some Uncertainty Issues
Visualizing Convex Algebraic Geometry
Conclusion

Non-Reduced Varieties
Small connected components
Real Lower-Dimensional Parts
Singularities

Singularities

(a): node \((A_1^-)\)

\[x^2 - y^2 + z^2 = 0 \]

Definition

A singularity of a surface \(S\) in \(\mathbb{R}^3\) is a point \(p \in S\), s.t. all the partial derivatives vanish:

\[\frac{\partial S}{\partial x}(p) = \frac{\partial S}{\partial y}(p) = \frac{\partial S}{\partial z}(p) = 0. \]

Example

- nodes \((A_1)\)
- cusps \((A_2)\)
- non-isolated

Oliver Labs, Saarland University (Germany)
Singularities

(a): node \((A_1^-)\)
\[
x^2 - y^2 + z^2 = 0
\]

(b): node (solitary, \(A_1^+)\)
\[
x^2 + y^2 + z^2 = 0
\]

Definition

A singularity of a surface \(S\) in \(\mathbb{R}^3\) is a point \(p \in S\), s.t. all the partial derivatives vanish:

\[
\frac{\partial S}{\partial x}(p) = \frac{\partial S}{\partial y}(p) = \frac{\partial S}{\partial z}(p) = 0.
\]

Example

- nodes \((A_1)\)
- cusps \((A_2)\)
- non-isolated
Singularities

(a): node \((A^{-}_1)\)
\[x^2 - y^2 + z^2 = 0 \]

(b): node (solitary, \(A^+_1\))
\[x^2 + y^2 + z^2 = 0 \]

(c): cusp \((A^-_2)\)
\[x^3 - y^2 + z^2 = 0 \]

Definition

A singularity of a surface \(S\) in \(\mathbb{R}^3\) is a point \(p \in S\), s.t. all the partial derivatives vanish:
\[\frac{\partial S}{\partial x}(p) = \frac{\partial S}{\partial y}(p) = \frac{\partial S}{\partial z}(p) = 0. \]

Example

- nodes \((A_1)\)
- cusps \((A_2)\)
- non-isolated
Singularities

(a): node (A_1^-)

\[x^2 - y^2 + z^2 = 0 \]

(b): node (solitary, A_1^+)

\[x^2 + y^2 + z^2 = 0 \]

(c): cusp (A_2^-)

\[x^3 - y^2 + z^2 = 0 \]

(d): cusp (A_2^+)

\[x^3 + y^2 + z^2 = 0 \]

Definition

A **singularity** of a surface S in \mathbb{R}^3 is a point $p \in S$, s.t. all the partial derivatives vanish:

\[\frac{\partial S}{\partial x}(p) = \frac{\partial S}{\partial y}(p) = \frac{\partial S}{\partial z}(p) = 0. \]

Example

- **nodes** (A_1)
 - **cusps** (A_2)
 - **non-isolated**
Singularities

(a): node \((A_1^-)\)
\[
x^2 - y^2 + z^2 = 0
\]

(b): node (solitary, \(A_1^+\))
\[
x^2 + y^2 + z^2 = 0
\]

(c): cusp \((A_2^-)\)
\[
x^3 - y^2 + z^2 = 0
\]

(d): cusp \((A_2^+)\)
\[
x^3 + y^2 + z^2 = 0
\]

(e): non-isolated
\[
(y - x^2)^2 - y^4 = 0
\]

Definition

A singularity of a surface \(S\) in \(\mathbb{R}^3\) is a point \(p \in S\), s.t. all the partial derivatives vanish:
\[
\frac{\partial S}{\partial x}(p) = \frac{\partial S}{\partial y}(p) = \frac{\partial S}{\partial z}(p) = 0.
\]

Example

- nodes \((A_1)\)
- cusps \((A_2)\)
- non-isolated
Some people simply measure the complexity of a singular point \(p \) by its multiplicity (i.e. the lowest degree monomial, if \(p = (0, 0) \), e.g.: \(x^2 + y^{32} \) (mult 2), \(x^3 - y^{32} \) (mult 3)).

However, this is a simplified point of view!

Three examples of plane curves with multiplicity two:

\[
x^2 - y^2 = 0
\]

\[
x^2 - y^8 = 0
\]

\[
x^2 - y^{32} = 0
\]
Some people simply measure the complexity of a singular point p by its multiplicity (i.e. the lowest degree monomial, if $p = (0, 0)$, e.g.: $x^2 + y^{32}$ (mult 2), $x^3 - y^{32}$ (mult 3)).

However, this is a simplified point of view!

Three examples of plane curves with multiplicity two:
Multiplicity

- Some people simply measure the complexity of a singular point p by its multiplicity (i.e. the lowest degree monomial, if $p = (0, 0)$, e.g.: $x^2 + y^{32}$ (mult 2), $x^3 - y^{32}$ (mult 3)).
- However, this is a simplified point of view!
- Three examples of plane curves with multiplicity two:
Some people simply measure the complexity of a singular point p by its multiplicity (i.e. the lowest degree monomial, if $p = (0, 0)$, e.g.: $x^2 + y^{32}$ (mult 2), $x^3 - y^{32}$ (mult 3)).

However, this is a simplified point of view!

Three examples of plane curves with multiplicity two:
Some people simply measure the complexity of a singular point \(p \) by its multiplicity (i.e. the lowest degree monomial, if \(p = (0, 0) \), e.g.: \(x^2 + y^{32} \) (mult 2), \(x^3 - y^{32} \) (mult 3)).

However, this is a simplified point of view!

Three examples of plane curves with multiplicity two:

\[
\begin{align*}
 x^2 - y^2 &= 0 \\
 x^2 - y^8 &= 0
\end{align*}
\]
Some people simply measure the complexity of a singular point p by its multiplicity (i.e. the lowest degree monomial, if $p = (0, 0)$, e.g.: $x^2 + y^{32}$ (mult 2), $x^3 - y^{32}$ (mult 3)).

However, this is a simplified point of view!

Three examples of plane curves with multiplicity two:

- $x^2 - y^2 = 0$
- $x^2 - y^8 = 0$
- $x^2 - y^{32} = 0$
We have to look closer!

When should two singularities be considered \textit{equal}?

\exists \text{ coordinate change (local diffeomorphism)}?

Such a coordinate change does not change any orders locally.
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\[x^3 - y^2 \]

\[x^3 - 50y^2 \]
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\(x^3 - y^2 \) \(\sim \) \(x^3 - 50y^2 \)
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\[x^3 - y^2 \quad \approx \quad x^5 - y^2 \]
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\[x^3 - y^2 \quad \sim \quad x^5 - y^2 \]
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\[x^2 - y^8 \]

\[(y - x^2)^2 - y^4 \]
We have to look closer!

When should two singularities be considered equal?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\[
x^2 - y^8 \quad \sim \quad (y - x^2)^2 - y^4
\]
We have to look closer!

When should two singularities be considered *equal*?

∃ coordinate change (local diffeomorphism)?

Such a coordinate change does not change any orders locally.

\[x^2 - y^8 \]

\[(y - x^2)^2 - y^4 \]

See: Arnold’s classification.
Invariants

We may distinguish a singularity at $(0, 0)$ of a plane curve f by invariants (under local diffeomorphisms):

- **Multiplicity** (for the origin, this is the lowest order of the appearing terms), e.g.: $xy + y^3$ has mult. 2, $x^2 + z^{17}$ also,
- **Milnor number** (number of 'vanishing cycles'; computable as the multiplicity of $(0, 0)$ as a root of the system of polynomials f_x, f_y),
- **Tjurina number** (multiplicity of $(0, 0)$ as a root of the system of polynomials f, f_x, f_y),
- **Dynkin Diagrams**,
- **Spectrum** of a singularity (eigenvalues of some operator).
Invariants

We may distinguish a singularity at \((0, 0)\) of a plane curve \(f\) by invariants (under local diffeomorphisms):

- **Multiplicity** (for the origin, this is the lowest order of the appearing terms), e.g.: \(xy + y^3\) has mult. 2, \(x^2 + z^{17}\) also,

- **Milnor number** (number of ‘vanishing cycles’; computable as the multiplicity of \((0, 0)\) as a root of the system of polynomials \(f_x, f_y)\),

- **Tjurina number** (multiplicity of \((0, 0)\) as a root of the system of polynomials \(f, f_x, f_y)\),

- **Dynkin Diagrams**,

- **Spectrum** of a singularity (eigenvalues of some operator).
Invariants

We may distinguish a singularity at \((0, 0)\) of a plane curve \(f\) by invariants (under local diffeomorphisms):

- **Multiplicity** (for the origin, this is the lowest order of the appearing terms), e.g.: \(xy + y^3\) has mult. 2, \(x^2 + z^{17}\) also,
- **Milnor number** (number of 'vanishing cycles'; computable as the multiplicity of \((0, 0)\) as a root of the system of polynomials \(f_x, f_y\)),
- **Tjurina number** (multiplicity of \((0, 0)\) as a root of the system of polynomials \(f, f_x, f_y\)),
- **Dynkin Diagrams**,
- **Spectrum of a singularity** (eigenvalues of some operator).
Invariants

We may distinguish a singularity at $(0, 0)$ of a plane curve f by invariants (under local diffeomorphisms):

- **Multiplicity** (for the origin, this is the lowest order of the appearing terms), e.g.: $xy + y^3$ has mult. 2, $x^2 + z^{17}$ also,
- **Milnor number** (number of ‘vanishing cycles’; computable as the multiplicity of $(0, 0)$ as a root of the system of polynomials f_x, f_y),
- **Tjurina number** (multiplicity of $(0, 0)$ as a root of the system of polynomials f, f_x, f_y),
- Dynkin Diagrams,
- Spectrum of a singularity (eigenvalues of some operator).
Invariants

We may distinguish a singularity at \((0, 0)\) of a plane curve \(f\) by invariants (under local diffeomorphisms):

- **Multiplicity** (for the origin, this is the lowest order of the appearing terms), e.g.: \(xy + y^3\) has mult. 2, \(x^2 + z^{17}\) also,

- **Milnor number** (number of ’vanishing cycles’; computable as the multiplicity of \((0, 0)\) as a root of the system of polynomials \(f_x, f_y\)),

- **Tjurina number** (multiplicity of \((0, 0)\) as a root of the system of polynomials \(f, f_x, f_y\)),

- **Dynkin Diagrams**,

- **Spectrum of a singularity** (eigenvalues of some operator).
Invariants

We may distinguish a singularity at $(0,0)$ of a plane curve f by invariants (under local diffeomorphisms):

- **Multiplicity** (for the origin, this is the lowest order of the appearing terms), e.g.: $xy + y^3$ has mult. 2, $x^2 + z^{17}$ also,
- **Milnor number** (number of ’vanishing cycles’; computable as the multiplicity of $(0,0)$ as a root of the system of polynomials f_x, f_y),
- **Tjurina number** (multiplicity of $(0,0)$ as a root of the system of polynomials f, f_x, f_y),
- **Dynkin Diagrams**,
- **Spectrum** of a singularity (eigenvalues of some operator).

>>> These can be computed using SINGULAR (there is even a classification library)! Some also using other systems.
The Tangency

Definition

The **Tangency** $\text{tang}(c_1, c_2)$ between two halfbranches c_1, c_2 of a plane curve singularity p is the order in which the distance between points on these halfbranches goes to 0:

$$\left| c_1(\varepsilon) - c_2(\varepsilon) \right| = O(\varepsilon^{\text{tang}(c_1, c_2)})$$

For each degree, there exist upper/lower bounds on the tangency!
The Tangency

Definition

The **Tangency** $\text{tang}(c_1, c_2)$ between two halfbranches c_1, c_2 of a plane curve singularity p is the order in which the distance between points on these halfbranches goes to 0:

$$|c_1(\varepsilon) - c_2(\varepsilon)| = O(\varepsilon^{\text{tang}(c_1, c_2)})$$

For each degree, there exist upper/lower bounds on the tangency!
Examples of Plane Curves with High Tangencies

- An ordinary double point has tangency 1.
- The tangencies of the two halfbranches c_1, c_2 of the normal forms $x^{k+1} + y^2 = 0$ of an A_k^--singularity, have tangencies $\text{tang}(c_1, c_2) = \frac{k+1}{2} (= \frac{d}{2})$.
- The tangencies of the plane curves $f_{k,2,-}^2 (x, y) = (y - x^k)^2 - y^{2k}$ of degree $d = 2k$ are (as A_{2k^2-1}-singularities): $\text{tang}_{(0,0)}(f_{k,2,-}^2) = \frac{2k^2}{2} = \frac{d^2}{4}$.
- \Rightarrow the possible tangency grows at least quadratically with the degree!
Examples of Plane Curves with High Tangencies

- An ordinary double point has tangency 1.
- The tangencies of the two halfbranches c_1, c_2 of the normal forms $x^{k+1} + y^2 = 0$ of an A_k^--singularity, have tangencies $\text{tang}(c_1, c_2) = \frac{k+1}{2}(= \frac{d}{2})$.
- The tangencies of the plane curves $f_{k,2,-}^2(x, y) = (y - x^k)^2 - y^{2k}$ of degree $d = 2k$ are (as A_{2k^2-1}-singularities): $\text{tang}((0,0)(f_{k,2,-}^2) = \frac{2k^2}{2} = \frac{d^2}{4}$.
- \Rightarrow the possible tangency grows at least quadratically with the degree!
Examples of Plane Curves with High Tangencies

- An ordinary double point has tangency 1.
- The tangencies of the two halfbranches c_1, c_2 of the normal forms $x^{k+1} + y^2 = 0$ of an A_k^--singularity, have tangencies
 $\text{tang}(c_1, c_2) = \frac{k+1}{2} (= \frac{d}{2})$.
- The tangencies of the plane curves $f_{k,2,-}^2(x, y) = (y - x^k)^2 - y^{2k}$ of degree $d = 2k$ are (as A_{2k^2-1}-singularities):
 $\text{tang}_{(0,0)}(f_{k,2,-}^2) = \frac{2k^2}{2} = \frac{d^2}{4}$.
- \Rightarrow the possible tangency grows at least quadratically with the degree!
Examples of Plane Curves with High Tangencies

- An ordinary double point has tangency 1.
- The tangencies of the two halfbranches c_1, c_2 of the normal forms $x^{k+1} + y^2 = 0$ of an A_k-singularity, have tangencies $\text{tang}(c_1, c_2) = \frac{k+1}{2} (= \frac{d}{2})$.
- The tangencies of the plane curves $f_{k,2,-}^2(x, y) = (y - x^k)^2 - y^{2k}$ of degree $d = 2k$ are (as A_{2k^2-1}-singularities):
 \[\text{tang}_{(0,0)}(f_{k,2,-}^2) = \frac{2k^2}{2} = \frac{d^2}{4}. \]
- \Rightarrow the possible tangency grows at least quadratically with the degree!
Examples of Surfaces with High Tangencies

- $d = 3$: A_5 possible, $d = 4$: A_{19} possible.
- A general lower bound for $d = 2k$:
 $$(y - x^k)^2 - (z - y^k)^2 + (z^k)^2$$ yields A_{2k^3-1}-singularity.
 E.g.: A_{15} on a quartic, A_{53} on a sextic.

⇒ the tangency grows at least cubically with the degree!
Examples of Surfaces with High Tangencies

- $d = 3$: A_5 possible, $d = 4$: A_{19} possible.
- A general lower bound for $d = 2k$: $(y - x^k)^2 - (z - y^k)^2 + (z^k)^2$ yields $A_{2k^3 - 1}$-singularity. E.g.: A_{15} on a quartic, A_{53} on a sextic.

\Rightarrow the tangency grows at least cubically with the degree!
Examples of Surfaces with High Tangencies

- $d = 3$: A_5 possible, $d = 4$: A_{19} possible.
- A general lower bound for $d = 2k$:
 \[(y - x^k)^2 - (z - y^k)^2 + (z^k)^2\] yields $A_{2k^3 - 1}$-singularity.
 E.g.: A_{15} on a quartic, A_{53} on a sextic.

⇒ the tangency grows at least cubically with the degree!
Examples of Surfaces with High Tangencies

- $d = 3$: A_5 possible, $d = 4$: A_{19} possible.
- A general lower bound for $d = 2k$:
 \[(y - x^k)^2 - (z - y^k)^2 + (z^k)^2\] yields $A_{2k^3 - 1}$-singularity.
 E.g.: A_{15} on a quartic, A_{53} on a sextic.

⇒ the tangency grows at least cubically with the degree!
Examples of Surfaces with High Tangencies

- \(d = 3 \): \(A_5 \) possible, \(d = 4 \): \(A_{19} \) possible.
- A general lower bound for \(d = 2k \):
 \[
 (y - x^k)^2 - (z - y^k)^2 + (z^k)^2 \quad \text{yields} \quad A_{2k^3-1}-\text{singularity}.

 E.g.: \(A_{15} \) on a quartic, \(A_{53} \) on a sextic.

\[\Rightarrow \text{the tangency grows at least cubically with the degree!} \]
An Upper Bound

Fix the degree d. Then the singularities cannot get too bad:

- Each possible node (# = δ_s) in a deformation of a singularity s reduces the genus of a plane curve by 1.
- Formula: $\text{genus}(f_d) = \frac{(d-1)(d-2)}{2} - \sum_{s \in \text{Sings}} \delta_s$.
- But: $\text{genus}(f_d) \geq 0$, thus: $\sum_{s \in \text{Sings}} \delta_s \leq \frac{(d-1)(d-2)}{2}$.
- E.g.: A_6 ($y^2 - x^7 = 0$): $\delta_{A_6} = 3 \Rightarrow \#(A_6) \cdot 3 \leq \frac{(d-1)(d-2)}{2}$.

E.g.: $d = 4$. $\frac{(d-1)(d-2)}{2} = 3$, i.e. $(A_6) \leq 1$, $(\text{sings}) \leq 3$.
- Similar bounds in n-space: $\#\text{Sings} \leq a \cdot d^n$ for some a.
An Upper Bound

Fix the degree d. Then the singularities cannot get too bad:

- Each possible node ($\# = \delta_s$) in a deformation of a singularity s reduces the genus of a plane curve by 1.
- Formula: $\text{genus}(f_d) = \frac{(d-1)(d-2)}{2} - \sum_{s \in \text{Sings}} \delta_s$.
- But: $\text{genus}(f_d) \geq 0$, thus: $\sum_{s \in \text{Sings}} \delta_s \leq \frac{(d-1)(d-2)}{2}$.
- E.g.: A_6 ($y^2 - x^7 = 0$): $\delta_{A_6} = 3 \Rightarrow \#(A_6) \cdot 3 \leq \frac{(d-1)(d-2)}{2}$.

E.g.: $d = 4$. $\frac{(d-1)(d-2)}{2} = 3$, i.e. $\#(A_6) \leq 1$, $\#(\text{sings}) \leq 3$.

- Similar bounds in n-space: $\#\text{Sings} \leq a \cdot d^n$ for some a.
An Upper Bound

Fix the degree d. Then the singularities cannot get too bad:

- Each possible node ($\# = \delta_s$) in a deformation of a singularity s reduces the genus of a plane curve by 1.
- Formula: $\text{genus}(f_d) = \frac{(d-1)(d-2)}{2} - \sum_{s\in\text{Sings}} \delta_s$.
- But: $\text{genus}(f_d) \geq 0$, thus: $\sum_{s\in\text{Sings}} \delta_s \leq \frac{(d-1)(d-2)}{2}$.
- E.g.: A_6 ($y^2 - x^7 = 0$): $\delta_{A_6} = 3 \Rightarrow \#(A_6) \cdot 3 \leq \frac{(d-1)(d-2)}{2}$.

E.g.: $d = 4$. $\frac{(d-1)(d-2)}{2} = 3$, i.e. $\#(A_6) \leq 1$, $\#(\text{sings}) \leq 3$.
- Similar bounds in n-space: $\#\text{Sings} \leq a \cdot d^n$ for some a.
An Upper Bound

Fix the degree d. Then the singularities cannot get too bad:

- Each possible node ($\# = \delta_s$) in a deformation of a singularity s reduces the genus of a plane curve by 1.
- Formula: \(\text{genus}(f_d) = \frac{(d-1)(d-2)}{2} - \sum_{s \in \text{Sings}} \delta_s \).
- But: \(\text{genus}(f_d) \geq 0 \), thus: \(\sum_{s \in \text{Sings}} \delta_s \leq \frac{(d-1)(d-2)}{2} \).
- E.g.: $A_6 (y^2 - x^7 = 0)$: $\delta_{A_6} = 3 \Rightarrow \#(A_6) \cdot 3 \leq \frac{(d-1)(d-2)}{2}$.

E.g.: $d = 4$. $\frac{(d-1)(d-2)}{2} = 3$, i.e. $\#(A_6) \leq 1$, $\#(\text{sings}) \leq 3$.

- Similar bounds in n-space: $\#\text{Sings} \leq a \cdot d^n$ for some a.

Oliver Labs, Saarland University (Germany)
An Upper Bound

Fix the degree d. Then the singularities cannot get too bad:

- Each possible node ($\# = \delta_s$) in a deformation of a singularity s reduces the genus of a plane curve by 1.
- Formula: $\text{genus}(f_d) = \frac{(d-1)(d-2)}{2} - \sum_{s \in \text{Sings}} \delta_s$.
- But: $\text{genus}(f_d) \geq 0$, thus: $\sum_{s \in \text{Sings}} \delta_s \leq \frac{(d-1)(d-2)}{2}$.
- E.g.: $A_6 (y^2 - x^7 = 0): \delta_{A_6} = 3 \Rightarrow \#(A_6) \cdot 3 \leq \frac{(d-1)(d-2)}{2}$.

\[\text{E.g.: } d = 4. \quad \frac{(d-1)(d-2)}{2} = 3, \text{ i.e. } \#(A_6) \leq 1, \#(\text{sings}) \leq 3.\]

- Similar bounds in n-space: $\#\text{Sings} \leq a \cdot d^n$ for some a.
An Upper Bound

Fix the degree d. Then the singularities cannot get too bad:

- Each possible node (# = δ_s) in a deformation of a singularity s reduces the genus of a plane curve by 1.
- Formula: $\text{genus}(f_d) = \frac{(d-1)(d-2)}{2} - \sum_{s \in \text{Sings}} \delta_s$.
- But: $\text{genus}(f_d) \geq 0$, thus: $\sum_{s \in \text{Sings}} \delta_s \leq \frac{(d-1)(d-2)}{2}$.
- E.g.: A_6 ($y^2 - x^7 = 0$): $\delta_{A_6} = 3 \Rightarrow \#(A_6) \cdot 3 \leq \frac{(d-1)(d-2)}{2}$.

\[\begin{align*}
\text{E.g.: } d &= 4. \quad \frac{(d-1)(d-2)}{2} = 3, \text{ i.e. } \#(A_6) &\leq 1, \quad \#(\text{sings}) \leq 3.
\end{align*} \]

- Similar bounds in n-space: $\#\text{Sings} \leq a \cdot d^n$ for some a.
Some Surface Visualization Issues

Summary: Visualization Challenges
 Plane Curves
 Surfaces

Some Uncertainty Issues

Visualizing Convex Algebraic Geometry

Conclusion

Oliver Labs, Saarland University (Germany)
Visualizing Real Curves and Surfaces
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1-\text{sing.}})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, \ (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities\(((y - x^k)^l - y^{kl} = 0, \ l = 2, \ A_{2k^2-1}\text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k^2+2}, \ k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities
 \[((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1}\text{-sing.})\]
- high solitary points close to other components:
 \[((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\]
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1}-\text{sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, \quad (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, \quad l = 2, \quad A_{2k^2-1}\text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, \quad k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, \ A_{2k^2-1} \text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

► many solitary points \((x^2 + y^2 = 0) \)
► higher solitary points \((x^{2k} + y^2 = 0, \quad (y - x^k)^2 + y^{2k} = 0) \)
► smooth curves with many components
► smooth curves with nested ovals
► high tangencies at isolated singularities \((y - x^k)^l - y^{kl} = 0, \quad l = 2, \quad A_{2k^2 - 1}\text{-sing.})\)
► high solitary points close to other components: \((y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, \quad k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1}-\text{sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^{l} - y^{kl} = 0, l = 2, A_{2k^2-1}\text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points ($x^2 + y^2 = 0$)
- higher solitary points ($x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0$)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities
 ($((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1}$-sing.)
- high solitary points close to other components:
 ($((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3$)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2 - 1}\text{-sing.})\)
- high solitary points close to other components:
 \[((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1}\text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, \quad (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, \quad l = 2, \quad A_{2k^2-1}\text{-sing.})\)
- high solitary points close to other components:
 \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k^2+2}, \quad k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1} - \text{sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, \ (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, \ l = 2, \ A_{2k^2 - 1}\text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, \ k = 3\)
Visualization Challenges for Plane Curves

- many solitary points \((x^2 + y^2 = 0)\)
- higher solitary points \((x^{2k} + y^2 = 0, (y - x^k)^2 + y^{2k} = 0)\)
- smooth curves with many components
- smooth curves with nested ovals
- high tangencies at isolated singularities \(((y - x^k)^l - y^{kl} = 0, l = 2, A_{2k^2-1}\text{-sing.})\)
- high solitary points close to other components: \(((y - x^k)^2 + y^{2k}) \cdot (y^2 - x^2 + \frac{1}{10}) + y^{2k+2}, k = 3\)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Visualization Challenges for Surfaces

- high tangencies at isolated singularities (e.g., A_k-singularities)
- high tangencies at non-isolated singularities (e.g., transversally A_k-singularities)
- real lower-dimensional parts (solitary points, curves)
- many singularities
- complicated isolated singularities (e.g., monoid surfaces)
- complicated non-isolated singularities (e.g., singularities of discriminants)
Current Implementations
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple’s algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- …many others…
- BUT: still no really convenient tool!
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple’s algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- ...many others...
- BUT: still no really convenient tool!
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple’s algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- ...many others...
- BUT: still no really convenient tool!
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple’s algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- … many others…
- BUT: still no really convenient tool!
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple's algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- ... many others ...
- BUT: still no really convenient tool!
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple’s algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- ...many others...
- BUT: still no really convenient tool!
Current Implementations

Plane curves:

- surf (misses solitary points)
- Maple’s algcurves package: also correctness problems
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact and relatively quick for low degrees!
- S. Lazard (INRIA Nancy)
- ... many others...
- BUT: still no really convenient tool!
Current Implementations

Surfaces:

- surf and its extensions such as surfex (quick, okay for low degree, if no high tangencies, misses lower-dim. comp.)
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact output, but very slow (more than a minute for degree 5)
- ... many others...
- BUT: still no really convenient tool!
Current Implementations

Surfaces:

- surf and its extensions such as surfex (quick, okay for low degree, if no high tangencies, misses lower-dim. comp.)
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact output, but very slow (more than a minute for degree 5)
- ... many others...
- BUT: still no really convenient tool!
Current Implementations

Surfaces:

- surf and its extensions such as surfex (quick, okay for low degree, if no high tangencies, misses lower-dim. comp.)
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact output, but very slow (more than a minute for degree 5)
- ... many others...
- BUT: still no really convenient tool!
Current Implementations

Surfaces:

- surf and its extensions such as surfex (quick, okay for low degree, if no high tangencies, misses lower-dim. comp.)
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact output, but very slow (more than a minute for degree 5)
- ...many others...
- BUT: still no really convenient tool!
Current Implementations

Surfaces:

- surf and its extensions such as surfex (quick, okay for low degree, if no high tangencies, misses lower-dim. comp.)
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact output, but very slow (more than a minute for degree 5)
- ... many others...
- BUT: still no really convenient tool!
Current Implementations

Surfaces:

- surf and its extensions such as surfex (quick, okay for low degree, if no high tangencies, misses lower-dim. comp.)
- axel (INRIA Nice): promising approach, but shows too much (in my version of the software)
- EXACUS (MPI Saarland): exact output, but very slow (more than a minute for degree 5)
- ... many others...
- **BUT: still no really convenient tool!**
Some Surface Visualization Issues

Summary: Visualization Challenges

Some Uncertainty Issues

Visualizing Convex Algebraic Geometry

Conclusion
Some Uncertainty Issues

Up to now: exact input data assumed.

But:
- In many applications: no exact input data!
- Maybe bounds on the coefficients!

We thus need algorithms for computing...
- Good estimates for the type of singularity of which the data might be a small deformation.
- Certified results for bounds on the possible types of singularities.
- ...
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

- In many applications: no exact input data!
- Maybe bounds on the coefficients!

We thus need algorithms for computing . . .

- Good estimates for the type of singularity of which the data might be a small deformation.
- Certified results for bounds on the possible types of singularities.
- . . .
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

- In many applications: no exact input data!
- Maybe bounds on the coefficients!

We thus need algorithms for computing...

- Good estimates for the type of singularity of which the data might be a small deformation.
- Certified results for bounds on the possible types of singularities.
- ...
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

► In many applications: no exact input data!
► Maybe bounds on the coefficients!

We thus need algorithms for computing...

► Good estimates for the type of singularity of which the data might be a small deformation.
► Certified results for bounds on the possible types of singularities.
► ...
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

- In many applications: no exact input data!
- Maybe bounds on the coefficients!

We thus need algorithms for computing...

- Good estimates for the type of singularity of which the data might be a small deformation.
- Certified results for bounds on the possible types of singularities.
- ...
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

▶ In many applications: no exact input data!
▶ Maybe bounds on the coefficients!

We thus need algorithms for computing...

▶ Good estimates for the type of singularity of which the data might be a small deformation.
▶ Certified results for bounds on the possible types of singularities.
▶ . . .
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

▶ In many applications: no exact input data!
▶ Maybe bounds on the coefficients!

We thus need algorithms for computing...

▶ Good estimates for the type of singularity of which the data might be a small deformation.
▶ Certified results for bounds on the possible types of singularities.
▶ . . .
Some Uncertainty Issues

Up to now: exact input data assumed.

But:

- In many applications: no exact input data!
- Maybe bounds on the coefficients!

We thus need algorithms for computing . . .

- Good estimates for the type of singularity of which the data might be a small deformation.
- Certified results for bounds on the possible types of singularities.
- . . .
Towards the computation of good estimates

- Z. Zheng uses an approximate gcd-algorithm to compute an approximation of the so-called singularity structure at a given common zero of several polynomials.

- Idea: reduce the problem to a singular value decomposition. Considering small singular values as 0 basically corresponds to specializing to the stratum of higher codimension of the discriminant.

- Essentially, this gives a natural heuristic for clustering several critical points.
Towards the computation of good estimates

- Z. Zheng uses an approximate gcd-algorithm to compute an approximation of the so-called singularity structure at a given common zero of several polynomials.

- Idea: reduce the problem to a singular value decomposition. Considering small singular values as 0 basically corresponds to specializing to the stratum of higher codimension of the discriminant.

- Essentially, this gives a natural heuristic for clustering several critical points.
Towards the computation of good estimates

- Z. Zheng uses an approximate gcd-algorithm to compute an approximation of the so-called singularity structure at a given common zero of several polynomials.

- Idea: reduce the problem to a singular value decomposition. Considering small singular values as 0 basically corresponds to specializing to the stratum of higher codimension of the discriminant.

- Essentially, this gives a natural heuristic for clustering several critical points.
Towards the computation of good estimates

- Z. Zheng uses an approximate \textit{gcd}-algorithm to compute an approximation of the so-called singularity structure at a given common zero of several polynomials.

- Idea: reduce the problem to a singular value decomposition. Considering small singular values as 0 basically corresponds to specializing to the stratum of higher codimension of the discriminant.

- Essentially, this gives a natural heuristic for clustering several critical points.
Towards the computation of good estimates

- Joab Winkler has an apparently much more stable approach in the case of one variable, i.e. root finding of polynomials with noise on the coefficients.
- Producing a version of this for two or three variables would be great!
- Algorithms producing certified results would be very nice, too. E.g. of the type: If the input coefficients are correct up to some ε then the worst possible singularities are the following:
Towards the computation of good estimates

- Joab Winkler has an apparently much more stable approach in the case of one variable, i.e. root finding of polynomials with noise on the coefficients.

- Producing a version of this for two or three variables would be great!

- Algorithms producing certified results would be very nice, too. E.g. of the type: If the input coefficients are correct up to some ε then the worst possible singularities are the following:
Towards the computation of good estimates

- Joab Winkler has an apparently much more stable approach in the case of one variable, i.e. root finding of polynomials with noise on the coefficients.

- Producing a version of this for two or three variables would be great!

- Algorithms producing certified results would be very nice, too. E.g. of the type: If the input coefficients are correct up to some ε then the worst possible singularities are the following:
Towards the computation of good estimates

- Joab Winkler has an apparently much more stable approach in the case of one variable, i.e. root finding of polynomials with noise on the coefficients.
- Producing a version of this for two or three variables would be great!
- Algorithms producing certified results would be very nice, too. E.g. of the type: If the input coefficients are correct up to some ε then the worst possible singularities are the following:
Some Surface Visualization Issues

Summary: Visualization Challenges

Some Uncertainty Issues

Visualizing Convex Algebraic Geometry

Conclusion

Oliver Labs, Saarland University (Germany)
Introduction

with Ph. Rostalski.

A **spectrahedron** in \mathbb{R}^n is the set of all x_1, \ldots, x_n, such that

\[(*) \quad A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0 \quad (\text{i.e. positive semi-definite})\]

for given symmetric $d \times d$ matrices A_i.

Semidefinite programming (SDP) is the computational problem of maximizing a linear function over a spectrahedron:

$$c_1 x_1 + \cdots + c_n x_n \quad \text{subject to} \quad (*) .$$

There are good algorithms for solving such problems.
Introduction

with Ph. Rostalski.

A **spectrahedron** in \mathbb{R}^n is the set of all x_1, \ldots, x_n, such that

\[(*) \quad A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0 \quad (\text{i.e. positive semi-definite})\]

for given symmetric $d \times d$ matrices A_i.

Semidefinite programming (SDP) is the computational problem of maximizing a linear function over a spectrahedron:

\[c_1 x_1 + \cdots + c_n x_n \quad \text{subject to } (*)\]

There are good algorithms for solving such problems.
Introduction

with Ph. Rostalski.

A spectrahedron in \mathbb{R}^n is the set of all x_1, \ldots, x_n, such that

\[(\star) \quad A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0 \quad (\text{i.e. positive semi-definite})\]

for given symmetric $d \times d$ matrices A_i.

Semidefinite programming (SDP) is the computational problem of maximizing a linear function over a spectrahedron:

$$c_1 x_1 + \cdots + c_n x_n \quad \text{subject to } (\star).$$

There are good algorithms for solving such problems.
Introduction

A **spectrahedron** (for given symmetric $d \times d$ matrices A_i)

\[
A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0 \quad \text{(i.e. positive semi-definite)}
\]

is:

- a convex set,
- bounded by parts of an algebraic surface of degree d,
- described by several inequalities:
 \[A(x) \geq 0 \iff \text{all principal minors } \geq 0, \]
- fewer inequalities:
 take all 1, 2, \ldots, d polars w.r.t. an interior point.
Introduction

A *spectrahedron* (for given symmetric $d \times d$ matrices A_i)

\[(\ast) \quad A_0 + x_1A_1 + \cdots + x_nA_n \geq 0\] (i.e. positive semi-definite)

is:

- a convex set,
- bounded by parts of an algebraic surface of degree d,
- described by several inequalities:
 \[A(x) \geq 0 \iff \text{all principal minors} \geq 0,\]
- fewer inequalities:
 take all $1.$, $2.$, \ldots, $d.$ polars w.r.t. an interior point.
Introduction

A **spectrahedron** (for given symmetric $d \times d$ matrices A_i)

(*) $A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0$ (i.e. positive semi-definite)

is:
- a convex set,
- bounded by parts of an algebraic surface of degree d,
- described by several inequalities:
 $A(x) \geq 0 \iff$ all principal minors ≥ 0,
- fewer inequalities:
 take all $1., 2., \ldots, d.$ polars w.r.t. an interior point.

Oliver Labs, Saarland University (Germany)
Introduction

A **spectrahedron** (for given symmetric $d \times d$ matrices A_i)

\[(*) \quad A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0 \quad \text{(i.e. positive semi-definite)} \]

is:

- a convex set,
- bounded by parts of an algebraic surface of degree d,
- described by several inequalities:
 \[A(x) \geq 0 \iff \text{all principal minors} \geq 0, \]
- fewer inequalities:
 take all 1., 2., \ldots, d. polars w.r.t. an interior point.
Introduction

A *spectrahedron* (for given symmetric $d \times d$ matrices A_i)

\[(*) \quad A_0 + x_1 A_1 + \cdots + x_n A_n \geq 0 \quad \text{(i.e. positive semi-definite)}\]

is:

- a convex set,
- bounded by parts of an algebraic surface of degree d,
- described by several inequalities:
 \[A(x) \geq 0 \iff \text{all principal minors} \geq 0,\]
- fewer inequalities:
 take all 1, 2, \ldots, d polars w.r.t. an interior point.
Examples

Cutting out the convex region by the polars:

- Polar illustration
- Pillow
- Plane curves
- Degree 3
- Eight singularities
- Degree 4

Oliver Labs, Saarland University (Germany)
Examples

Cutting out the convex region by the polars:

- polar illustration
- plane curves
- pillow
- degree 3
- eight singularities
- degree 4
Examples

Cutting out the convex region by the polars:

polar illustration
plane curves

pillow
degree 3

eight singularities
degree 4
Examples

Cutting out the convex region by the polars:

- polar illustration
- plane curves
- pillow
- degree 3
- eight singularities
- degree 4
Examples

Cutting out the convex region by the polars:

- polar illustration
- plane curves
- pillow
- degree 3
- eight singularities
- degree 4
Examples

Cutting out the convex region by the polars:

- polar illustration
- plane curves
- pillow
- degree 3
- eight singularities
- degree 4
Examples

Cutting out the convex region by the polars:

\[
\begin{pmatrix}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{pmatrix} \geq 0
\]

polar illustration
plane curves
pillow
degree 3
eight singularities
degree 4
Examples

Cutting out the convex region by the polars:

- Polar illustration
- Pillow
- Eight singularities

 Oliver Labs, Saarland University (Germany)
Examples

Cutting out the convex region by the polars:

- polar illustration
- plane curves
- pillow
 degree 3
- eight singularities
 degree 4
Examples

Cutting out the convex region by the polars:

- polar illustration
- pillow degree 3
- eight singularities degree 4
Examples

Cutting out the convex region by the polars:

- Polar illustration: plane curves
- Pillow: degree 3
- Eight singularities: degree 4
Examples

Cutting out the convex region by the polars:

- polar illustration
- pillow
 - plane curves
 - degree 3
- eight singularities
 - degree 4

- basic idea:
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- examples:
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through convG(3, 6)

- **basic idea:**
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- **examples:**
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through $\text{conv}G(3, 6)$

Oliver Labs, Saarland University (Germany)

- basic idea:
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- examples:
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through \text{conv}G(3, 6)

▶ basic idea:
 ▶ optimize in enough directions
 ▶ this yields points on the boundary of the convex set
 ▶ compute a triangulation with these points as vertices
 ▶ visualize this

▶ examples:
 ▶ screenshot
 ▶ the pillow
 ▶ Bernd’s ex. with 8 nodes
 ▶ a projection of a spectrahedron
 ▶ a family of projections of spectrahedra
 ▶ a random cut through convG(3, 6)

- basic idea:
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- examples:
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through convG(3, 6)

- basic idea:
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- examples:
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through convG(3, 6)

- **basic idea:**
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- **examples:**
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through $\text{conv}G(3, 6)$

- basic idea:
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- examples:
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through conv\(G(3, 6)\)

- **basic idea:**
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- **examples:**
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through $\text{conv}G(3, 6)$

- **basic idea:**
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- **examples:**
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through $\text{conv} G(3, 6)$

- **basic idea:**
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- **examples:**
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through conv $G(3, 6)$

- **basic idea:**
 - optimize in enough directions
 - this yields points on the boundary of the convex set
 - compute a triangulation with these points as vertices
 - visualize this

- **examples:**
 - screenshot
 - the pillow
 - Bernd’s ex. with 8 nodes
 - a projection of a spectrahedron
 - a family of projections of spectrahedra
 - a random cut through $\text{conv}G(3, 6)$

- **Basic idea:**
 - Optimize in enough directions
 - This yields points on the boundary of the convex set
 - Compute a triangulation with these points as vertices
 - Visualize this

- **Examples:**
 - Screenshot
 - The pillow
 - Bernd’s ex. with 8 nodes
 - A projection of a spectrahedron
 - A family of projections of spectrahedra
 - A random cut through \(\text{conv}G(3, 6) \)
Some Surface Visualization Issues

Summary: Visualization Challenges

Some Uncertainty Issues

Visualizing Convex Algebraic Geometry

Conclusion
Conclusion

It is not easy to visualize plane curves correctly!
Conclusion

There is a list of explicit equations covering these cases (IMA publ., 2009)!
Conclusion

Singular points of curves are especially difficult!
Conclusion

Also for these cases, there is a list of explicit examples!
Conclusion

For surfaces, everything is even harder!

Also for surfaces, there have a list of explicit equations (pre-preprint available).
Conclusion

In particular, if lower-dimensional components exist!
Conclusion

If uncertainty about the input coefficients occurs, all questions become even more difficult!

See Joab Winkler’s talk for finding a reasonable solution nearby in the one-variable case.

An analogue in more variables which is better and faster than Z. Zeng’s approach would be very nice.
Conclusion

If uncertainty about the input coefficients occurs, all questions become even more difficult!

See Joab Winkler’s talk for finding a reasonable solution nearby in the one-variable case.

An analogue in more variables which is better and faster than Z. Zeng’s approach would be very nice.
Conclusion

Good news: new problems are coming up!

E.g.: Visualization of convex algebraic geometry brings new methods into the game!
Conclusion

Good news: new problems are coming up!

E.g.: Visualization of convex algebraic geometry brings new methods into the game!
Conclusion

To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa. And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).
Conclusion

To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa. And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).
Conclusion

To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa. And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).

Oliver Labs, Saarland University (Germany)
Conclusion

To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa. And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).
Conclusion

To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa.
And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).
Conclusion

To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa. And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).
To finish: It is almost impossible to separate the topics of this workshop — they all add a piece to the big picture:

- Geometric modelling,
- Exact polynomial algebra,
- Approximate polynomial algebra.

For solving a problem in geometric modelling, we need polynomial algebra, and vice versa. And if we want real-time visualizations, we often have to work with approximate algebra, even if the initial data was exact. And even if we have approximate data, it might help to study these problems exactly (e.g., using interval arithmetic).
Thank You

Thank you for your attention.

Oliver Labs

for related publications, see:
www.OliverLabs.net

for software and visualizations, see:
www.surfex.AlgebraicSurface.net
www.Calendar.AlgebraicSurface.net
www.imaginary-exhibition.com